The curriculum that we have constructed is supported by the belief that maths is a core means of introducing essential everyday concepts, skills and thinking strategies and we aim for every child to enjoy and relish the mathematical opportunities we provide.

At The Oaks, we delight in our children making connections, asking questions and being actively curious within our systematic and connected curriculum. It encourages children to be daring mathematicians who query their answers with resilience and reasoning, supporting every child's high expectations of their mathematical fluency, understanding and flexibility in solutions.

As we believe that each child can be a successful mathematician, the opportunity to extend every child's understanding is made accessible, actively encouraged and weaved in through the expertise of all teaching staff. Through the ongoing research within school, we recognise the considerable weighting that great depth challenges have and believe that they are an essential part of the mathematical learning journey.

Throughout every year group, the curriculum is designed to be rooted a Concrete, Pictorial and Abstract Approach which continually and consistently connects each mathematical concept. Formal methods that are included are deep-rooted in mathematical research and underlying concepts.

Our mathematical journey is weaved in throughout the curriculum, to ensure each child's development into a successful adult. We understand the crucial contribution that mathematical understanding has to financial literacy, science, technology and engineering, and its contribution to our culture, society and economy.

Our CPA curriculum is based on the Power Maths CPA Calculation Policy, supported by the Government Guidance Ready to Progress criteria. Additionally, through CPA training and teaching group research, we have added vocabulary and further questioning as these are key priorities in our School Development Plan.

These are a minimum of representations and models that can be used. Additional representations and models should be used by the teaching staff to aid the Addition and Subtraction learning journey.

Contents

Questioning Stems

Using Questioning to Stimulate Mathematical Thinking within Lesson

Addition and Subtraction Calculation Sequence
Reception
Year One
Year Two
Year Three
Year Four
Year Five
Year Six

Using Questioning to stimulate mathematical thinking within lessons
(Source: Way. J, 2014, https://nrich.maths.org/2473)

Within the context of open-ended mathematical tasks, it is useful to group questions into four main categories (Badham, 1994). These questions can be used be the teacher to guide the children through investigations while stimulating their mathematical thinking and gathering information about their knowledge and strategies.

1. Starter questions

These take the form of open-ended questions which focus the children's thinking in a general direction and give them a starting point. Examples:
How could you sort these.......?
How many ways can you find to ?
What happens when we ?
What can be made from....?
How many different can be found?

2. Questions to stimulate mathematical thinking

These questions assist children to focus on particular strategies and help them to see patterns and relationships. This aids the formation of a strong conceptual network. The questions can serve as a prompt when children become 'stuck'. (Teachers are often tempted to turn these questions into instructions, which is far less likely to stimulate thinking and removes responsibility for the investigation from the child).
Examples:
What is the same?
What is different?
Can you group these in some way?
Can you see a pattern?
How can this pattern help you find an answer?
What do think comes next? Why?
Is there a way to record what you've found that might help us see more patterns?
What would happen if....?

3. Assessment questions

Questions such as these ask children to explain what they are doing or how they arrived at a solution. They allow the teacher to see how the children are thinking, what they understand and what level they are operating at. Obviously they are best asked after the children have had time to make progress with the problem, to record some findings and perhaps achieved at least one solution.
Examples:

What have you discovered?
How did you find that out?
Why do you think that?
What made you decide to do it that way?

4. Final discussion questions

These questions draw together the efforts of the class and prompt sharing and comparison of strategies and solutions. This is a vital phase in the mathematical thinking processes. It provides further opportunity for reflection and realisation of mathematical ideas and relationships. It encourages children to evaluate their work.
Examples:
Who has the same answer/ pattern/ grouping as this?
Who has a different solution?
Are everybody's results the same?
Why/why not?
Have we found all the possibilities?
How do we know?
Have you thought of another way this could be done?
Do you think we have found the best solution?

Mathematics Early Years Outcomes

ELG: Number

- Children at the expected level of development will:
- Have a deep understanding of number to 10, including the composition of each number;
- Subitise (recognise quantities without counting) up to 5 ;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

ELG: Numerical Patterns Children at the expected level of development will:

- Verbally count beyond 20 , recognising the pattern of the counting system;
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity;
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

| Concrete | Abstract | Vocabulary |
| :--- | :---: | :---: | :---: |
| Reception Addition | Victorial | |
| Within reception, a variety of concrete, pictorial and abstract resources will be used depending on the focus or unit. The teacher will
 use their professional judgement to decide which of these would be most appropriate. Concrete, pictorial and abstract resources
 can be used individually or collectively. Examples of these are below.
 At The Oaks, we provide opportunities for children to;
 - Know that a group of things change in quantity when something is added.
 - Find the total number of items in two groups by counting all of them.
 - Say the number that is one more than a given number.
 - Finds one more from a group of up to five objects, then ten objects.
 - In practical activities and discussion, beginning to use the vocabulary within this document.
 - Using quantities and objects, they add two single digit numbers and count on to find the answer.
 - Solve problems including doubling. | | |

Reception Subtraction

At The Oaks, we provide opportunities for children to

- Knows that a group of things change in quantity when something is taken away
- Find one less from a group of five objects, then ten objects.
- In practical activities and discussion, beginning to use the vocabulary involved in this document
- Using quantities and objects, they subtract two single digit numbers and count back to find the answer.

Use toys and general classroom resources for children to physically manipulate, group/regroup.

Use specific maths resources such as snap cubes, Numicon, bead strings etc.

Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.

A group of pictures for children to cross out or cover quantities to support subtraction.

\qquad XIXXX.

Use visual supports such as ten frames, part part whole and bar model with pictures/icons.

A focus on symbols and numbers to form a calculation.

$$
10-6=4
$$

3	$?$
7	

$$
7-3=?
$$

* No expectation for children to be able to record a number sentence/addition calculation

Year One Addition and Subtraction

National Curriculum Objectives

- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20 , including 0
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=?-9$

	The parts are 2 and 4. The whole is 6 .	The parts are 1 and 5. The whole is 6 .	$\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$	whole relationship same different more less
	Knowing and finding number bonds within 10 Break apart a group and put back together to find and form number bonds. $3+4=7$ $6=2+4$	Knowing and finding number bonds within 10 Use five and ten frames to represent key number bonds. $5=4+1$ $10=7+3$	Knowing and finding number bonds within 10 Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$	number bond represent part whole zero example same different include cube five/ten frame equal equivalent equation
	Understanding teen numbers as a complete 10 and some more Complete a group of 10 objects and count more.	Understanding teen numbers as a complete 10 and some more Use a ten frame to support understanding of a complete 10 for teen numbers.	Understanding teen numbers as a complete 10 and some more. 1 ten and 3 ones equal 13. $10+3=13$	teen number more than 10 tens ones tens frame represent

		13 is 10 and 3 more.		more less equal equivalent complete additional add
	Adding by counting on Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Adding by counting on Children use counters to support and represent their counting on strategy.	Adding by counting on Children use number lines or number tracks to support their counting on strategy. $7+5=$ \square	count on number line strategy twenty more less represent representation equal equivalent
	Adding the 1s Children use bead strings to recognise how to add the 1 s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children represent calculations using ten frames to add a teen and 1s. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$	teen number within 10 more than 10 represent representation recognise equal equivalent addition more less
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition.	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation.	bridge ten frame more less makes

	7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more.	they can add using knowledge of number bonds to 10 .		equal equivalent number bonds part whole model calculation sum equation
Year One Subtraction				
Year 1 Subtrac tion	Counting back and taking away Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 1 is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$	counting back counting forward left remove arrange number line number track represent object problem equal commutative
	Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction.	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction.	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part.	whole part missing part add subtract take away find equal equivalent

	$8-5=?$	$5-4=$	$7-3=?$ Children develop an understanding of the relationship between addition and subtraction facts in a partwhole model.	
	Finding the difference Arrange two groups so that the difference between the groups can be worked out. 8 is 2 more than 6. 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Finding the difference Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1.	Finding the difference Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .	find the difference counters subtraction number line jumps move backwards count backwards more less draw sketch counters

Subtraction within 20 Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1 s efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	Subtraction within 20 Understand when and how to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	bead string number bonds subtract count backwards quicker slower more less equal number line tens frame
Subtracting 10s and 1s For example: 18-12 Subtract 12 by first subtracting the 10 , then the remaining 2. First subtract the 10, then take away 2.	Subtracting 10s and 1s For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First subtract the 10, then subtract 2.	Subtracting 10s and 1s Use a part-whole model to support the calculation. 19-14 $19-10=9$ $9-4=5$ So, $19-14=5$	part whole calculate equal equivalent method strategy equation commutative number family take away remove partition
Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts.	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames.	Subtraction bridging 10 using number bonds Use a number line and a partwhole model to support the method. $13-5$	number bonds tens frame represent part whole model strategy split partition

Government Guidance Ready to Progress criteria

1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.
1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals ($=$) symbols, and relate additive expressions and equations to real-life contexts. and =

Year 2 Addition

- solve problems with addition and subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and 1 s
- a two-digit number and 10 s
- 2 two-digit numbers
- adding 3 one-digit numbers
- show that addition of 2 numbers can be done in any order (commutative) and subtraction of 1 number from another cannot recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

	Concrete	Pictorial	Abstract	Vocabulary
Understandi ng 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.	place value less than greater than digit difference even odd sum equation
Adding 10s	Use known bonds and unitising to add 10s.	Use known bonds and unitising to add 10s.	Use known bonds and unitising to add 10s.	

	I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	$\theta+\theta=\theta$ I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	$\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$
Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1 s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1 s . 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. $34+5=39$ or

			T 3 3 $+\quad 5$	
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones. I need to add 7. I will use 5 to complete a 10 , then add 2 more.	Complete a 10 using number bonds.	Complete a 10 using number bonds. $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$	
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	
Adding a multiple of 10 to a 2-	Add the 10 s and then recombine.	Add the 10 s and then recombine.	Add the 10s and then recombine. $37+20=?$	

digit number	27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	$\begin{aligned} & 30+20=50 \\ & 50+7=57 \\ & 37+20=57 \end{aligned}$	
Adding a multiple of 10 to a 2digit number using columns	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$	multiple

Adding two 2-digit numbers	Add the 10 s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10 s and 1 s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10 s and the 1 s separately, bridging 10s where required. A number line can support the calculations.
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10 s .		Add the 1s. Then add the 10 s.
Adding two 2-digit numbers	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

with exchange			$\begin{array}{r\|c\|} \hline & 0 \\ \hline 3 & 6 \\ +2 & 9 \\ \hline & 5 \\ \hline \end{array}$ $+\begin{array}{r\|c\|} \hline \mathrm{T} & 0 \\ \hline 3 & 6 \\ 2 & 9 \\ \hline 6 & 5 \\ \hline \end{array}$	
Year 2 Subtraction				
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10. $\theta \otimes \not \Delta \not \subset \not \subset \not \subset \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10. $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10. 7 tens subtract 5 tens is 2 tens. $70-50=20$	
Subtracting a singledigit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds.	

	T 0 100 00 100 $\neq \neq \neq$ 100		$\begin{array}{rl} T & 0 \\ \hline 3 y & \\ -\quad 3 \\ \hline & 3 \\ \hline 3 & 6 \\ \hline & \\ & 9-3=6 \\ 39-3=36 \end{array}$
Subtracting a singledigit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5 , then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a singledigit number using exchange	Exchange 1 ten for 10 ones. This may be done in or out of a place value grid.	Exchange 1 ten for 10 ones.	Exchange 1 ten for 10 ones. 0 12 5 $-\quad$ 7 8

			$25-7=18$	
Subtracting a 2-digit number	Subtract by taking away. 0000000000 0000000000 0000000000 0000000000 $\bigcirc \bigcirc \bigcirc \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ \varnothing 61-18 I took away 1 ten and 8 ones.	Subtract the 10s and the 1 s . This can be represented on a 100 square.	Subtract the 10s and the 1 s . This can be represented on a number line. $64-41=?$ $64-1=63$ $63-40=23$ $64-41=23$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$	
Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10 s. This may be done in or out of a place value grid.	Subtract the 1s. Then subtract the 10s.	Using column subtraction, subtract the 1s. Then subtract the 10s.	

	T 0 88800 $00 \phi \phi$ 88800 $\varnothing \varnothing \phi \phi$ $38-16=22$		$\begin{array}{r\|r\|} \mathrm{T} & \mathrm{O} \\ \hline 4 & 5 \\ -1 & 2 \\ \hline & 3 \\ \hline T & 0 \\ \hline 4 & 5 \\ \hline & \\ \hline & 2 \\ \hline 3 & 3 \end{array}$	
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10s.	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10s.	
Government 2AS-1 Add a 2AS-2 Recog	uidance Ready to Prog d subtract across 10. ise the subtraction stru	nce' and answer questions of the	"How many more...?"	

2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two digit number.
2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two digit numbers.

				Place Value Complex
Understan ding place value to 1,000	Unitise 100s, 10s and 1 s to build 3digit numbers.	Use equipment to represent numbers to 1,000 . Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.	place value part part whole denes
Adding 100s	Use known facts and unitising to add multiples of 100 . $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds	Use known facts and unitising to add multiples of 100 . M,	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising.	addition bridging place value exchange bar model group representation represent total

	$300+200=500$	$3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	3 2 $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$	
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bonds to add the 1 s . Use number bonds to add the ls. $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s . $5+4=9$ So, $245+4=249$	calculation unit addition number line represent representation
3-digit number + 1s with exchange	Understand that when the 1s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding.	Understand how to bridge by partitioning to the 1 s to make the next 10.	exchange bridging total column method row

		H T O ต9ロロロ $135+7=142$	$\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$ Ensure that children understand how to add 1 s bridging a 100. $\begin{aligned} & 198+5=? \\ & 198+2+3=203 \end{aligned}$	
3－digit number＋ 10s，no exchange	Calculate mentally by forming the number bond for the 10 s ．	Calculate mentally by forming the number bond for the 10 s ． $351+30=?$	Calculate mentally by forming the number bond for the 10s． $753+40$ I know that $5+4=9$ So， $50+40=90$	total column method row

	There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	5 tens +3 tens $=8$ tens $351+30=381$	$753+40=793$	
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. \square 6	Add by exchanging 10 tens for 1 hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$	exchange bridging total column method row
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.	place value grid partition order/organise column

3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$	exchange place value bridging total column method row Hundreds, Tens Ones Order Identify Represent Estimate Numerals
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid.	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.	column place value exchange hundreds tens

	$326+541$ is represented as:			on
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid. (9898)	Use column addition, ensuring understanding of place value at every stage of the calculation. $\begin{array}{r} H T O \\ \hline 1 \begin{array}{r} 2 \\ 1 \end{array} \\ +27 \\ \hline 43 \\ \hline \square \end{array}$ $\begin{array}{rrr} H & \text { T } & 0 \\ \hline 1 & 2 & 6 \\ +2 & 1 & 7 \\ \hline 3 & 4 & 3 \\ \hline \end{array}$ $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=?$	
Representi ng addition problems, and selecting appropriat e methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$	Use representations to support choices of appropriate methods.	bar model partition complex partition addition altogether sum of total

		$275+99=374$			I will add 100，then subtract 1 to find the solution． $128+105+83=?$ I need to add three numbers． $128+105=233$	
Year 3 Subtraction						
Subtractin g 100s	Use known facts and unitising to subtract multiples of 100 ． $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$ Understand the link with counting back in 100s． Use known facts and unitising as efficient and accurate methods． I know that $7-4=3$ ．Therefore， 1 know that $700-400=300$ ．				place value digit subtract total equal calculation unit
3－digit number－ 1s，no exchange	Use number bonds to subtract the 1 s ．	Use num 1s．		s to subtract the	Understand the link with counting back using a number line． Use known number bonds to calculate mentally． $476-4=?$	part－part whole partition place value digit subtract total equal calculation

	$214-3=?$ $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$		\square 15		$\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$	unit
3-digit number 1 s , exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represen a place $151-6=$	the requ ue grid.	ed exchange on	Calculate mentally by using known bonds. $151-6=?$ $151-1-5=145$	bridging exchanging column place value
3-digit number 10s, no exchange	Subtract the 10s using known bonds.	Subtract	10s us	g known bonds.	Use known bonds to subtract the 10s mentally. $372-50=?$ $70-50=20$	

	$381-10=?$ 8 tens with 1 removed is 7 tens. $381-10=371$	$\begin{aligned} & 8 \text { tens }-1 \text { ten }=7 \text { tens } \\ & 381-10=371 \end{aligned}$	So, $372-50=322$	
3-digit number 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment.$210-20=?$H T O \# 目 $\#$ 目 I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $235-60=?$ $\begin{aligned} 235 & =100+130+5 \\ 235-60 & =100+70+5 \\ & =175 \end{aligned}$	
3-digit number up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.	exchange subtract subtraction bridging place holder column row total

			$\begin{array}{rrr} H & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & & 7 \\ \hline H & & 0 \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & 4 & 7 \\ \hline H & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline 6 & 4 & 7 \end{array}$	
3-digit number up to 3-digit number, exchange required	Use equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones.	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. $\begin{array}{rrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline \mathrm{I} & 6 \lambda & 5 \\ -\quad 3 & 8 \\ \hline \mathrm{I} & 3 & 7 \\ \hline \end{array}$ $175-38=137$ If the subtraction is a 3 -digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10 s column.	
Representi ng subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions.	round rounding estimate estimating represent bar model

		$\begin{array}{cc} \text { Team A } & 454 \\ \text { Team B } & 128 \longleftarrow ? \end{array}$ Bar models can also be used to show that a part must be taken away from the whole.	The part-whole model supports understanding. I have completed this subtraction. $525-270=255$ I will check using addition. $\begin{array}{r} H \quad \mathrm{~T} \\ \hline 270 \\ +255 \\ \hline 5 \quad 25 \\ \hline \end{array}$	inverse operation approximate

Government Guidance Ready to Progress criteria

3AS-1 Calculate complements to 100 .

3AS-2 Add and subtract up to three-digit numbers using columnar methods.
3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-partwhole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.

Year 4

Year Four Addition and Subtraction

National Curriculum Objects

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.
- estimate and use inverse operations to check answers to a calculation .
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

	Concrete	Pictorial	Abstract	Vocabulary Further Questioning
Understan ding	Use place value equipment to understand the place value of 4-digit numbers.	Represent numbers using place value counters once children	Understand partitioning of 4-digit numbers, including numbers with digits of 0.	place value digit difference

numbers to 10,000	4 thousands equal 4,000. 1 thousand is 10 hundreds.	understand the relationship between $1,000 \mathrm{~s}$ and 100 s . $2,000+500+40+2=2,542$	$5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.	even odd sum equal equation bases ten/ dienes
Choosing mental methods where appropriat e	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$	calculation unit addition
Column addition with exchange	Use place value equipment on a place value grid to organise thinking. Ensure that children understand how the columns relate to place value and what to do if the numbers are not all 4-digit numbers. Use equipment.to show 1,905 + 775 .	Use place value equipment to model required exchanges.	Use a column method to add, including exchanges.	exchange bridging total column method row

	Why hav used for Thousan Which colu	only three e second row box empty? umns will to	columns b w? Why is ? tal 10 or m	0 een ise the	Include more tha	amples that one column			Th H T O I 5 5 4 +4 2 3 7 1Th H T O I 5 5 4 +4 2 3 7 9 I Th H T O I 5 5 4 +4 2 3 7 7 9 1 1 $+$Th H T O I 5 5 4 4 2 3 7 5 7 9 I 1 Include examples that exchange in more than one column.	
Representi ng additions and checking strategies					Bar mo represe context method	may be us dditions in nd to justify here appro	sed to problem y mental priate.		Use rounding and estimating on a number line to check the reasonableness of an addition.	round rounding estimate estimating represent bar model inverse operation

	$\begin{aligned} & \text { 目 } \end{aligned} \text { 昭昭 }$			
Representi ng subtraction s and checking strategies		Use bar models to represent subtractions where a part needs to be calculated． I can work out the total number of Yes votes using 5，762－2，899． Bar models can also represent＇find the difference＇as a subtraction problem．	Use inverse operations to check subtractions． ／calculated 1，225－799＝574． I will check by adding the parts． The parts do not add to make 1,225 ． I must have made a mistake．	bar model subtraction inverse operation represent calculate difference
Government Guidance Ready to Progress criteria Use Y3 Government guidance to inform planning．				

Year Five Addition and Subtraction

National Curriculum Objects

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).
- add and subtract numbers mentally with increasingly large numbers.
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

	Concrete	Pictorial	Abstract	Vocabulary Further Questioning
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show 15,735 + 4,012.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.	addition bridging place value exchange column total
Representi ng additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.	addition bridging place value exchange bar model group representation represent total

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? $0.6 \mathrm{~m}$	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$	tenths add on combine bar model representation represent decimal place place holder fraction equivalents total
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $\begin{array}{r}\mathrm{O} \cdot \mathrm{Tt} \\ 0 \cdot \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline 1\end{array}$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \quad 3 \\ +0 \cdot 4 \quad 5 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline \end{array}$ Include additions where the numbers of decimal places are different.	tenths place value column add on combine exchange bridgel decimal place holder fraction equivalents total

			I calculated $18,000+4,000$ mentally to check my subtraction.	addition inverse difference
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions. / calculated $7,546-2,355=5,191$. I will check using the inverse.	difference total addition subtraction inverse counting on bridging compensation number bonds calculation representation represent
Subtractin g decimals	Explore complements to a whole number by working in the context of length. $\begin{aligned} & 0.49 \mathrm{~m} \\ & 1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m} \\ & 1-0.49=? \end{aligned}$	Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5.74-2.25=?$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$	subtract decimals place value place holder columns bridging exchange tenths hundredths thousandths bar model

Year Six Addition and Subtraction

National Curriculum Objects

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

	Concrete	Pictorial	Abstract	Vocabulary Further Questioning
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Use bar model and number line representations to model addition in problem-solving and measure contexts.	Use column addition where mental methods are not efficient. Recognise common errors with column addition. $32,145+4,302=?$ Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.	addition bridging place value exchange column total approximately approximating compare decimal difference digit estimating hundred hundreds of thousands million ten million minus nearest nearly negative numeral order place-holder formal written method pictorial concrete resources
Selecting mental methods for larger numbers where appropriat e	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods.	Use a bar model to support thinking in addition problems. $257,000+99,000=?$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$	Round up/round down addition bridging place value exchange column total approximately

		Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	H T $\mathrm{O} \cdot$ Tth Hth 3 0 9 \cdot 6 -2 0 6 \cdot 4 0 1 0 $3 \cdot$ 2 0	placeholder value operation exchange compensate representation represent subtract less than fewer formal method place value decimal point position
Subtractin g mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$	difference total addition subtraction inverse counting on bridging compensation number bonds calculation representation represent difference less than placeholder value operation representation represent subtract less than fewer pictotal formal method

| | | | relationship of number
 mental methods |
| :--- | :--- | :--- | :--- | :--- |

Government Guidance Ready to Progress criteria

6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.
6AS/MD-3 Solve problems involving ratio relationships
6AS/MD-4 Solve problems with 2 unknowns

Mathematics Early Years Outcomes

ELG: Number

- Children at the expected level of development will:
- Have a deep understanding of number to 10, including the composition of each number;
- Subitise (recognise quantities without counting) up to 5 ;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

ELG: Numerical Patterns Children at the expected level of development will:

- Verbally count beyond 20, recognising the pattern of the counting system;
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity;
- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

Concrete	Pictorial	Abstract	Vocabulary
Reception Multiplication			

Within reception, a variety of concrete, pictorial and abstract resources will be used depending on the focus or unit. The teacher will use their professional judgement to decide which of these would be most appropriate. Concrete, pictorial and abstract resources can be used individually or collectively. Examples of these are below.

At The Oaks, we provide opportunities for children to;

- Solve problems including doubling

Reception Division

At The Oaks, we provide opportunities for our children to;
-solve problems including halving and sharing;
-halve a whole, halving a quantity of objects;
-share a quantity of objects.

 Children have the opportunity to physically cut objects, food or shapes in half. Counting and other maths resources for children to share into two equal groups. Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated. Counting and other maths resources for children to explore sharing between 3 or more.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	There is not an expectation in Reception for children to write division related symbols.	

Year One Addition and Subtraction

National Curriculum Objects

- add and subtract numbers mentally, including:

0 a three-digit number and 1s

- a three-digit number and 10s
- a three-digit number and 100 s
- add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Concrete	Pictorial	Abstract	Vocabulary Further Questioning	

